Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 21(1): 156, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370099

RESUMEN

BACKGROUND: Golgi apparatus (GA) is assembled as a crescent-like ribbon in mammalian cells under immunofluorescence microscope without knowing the shaping mechanisms. It is estimated that roughly 1/5 of the genes encoding kinases or phosphatases in human genome participate in the assembly of Golgi ribbon, reflecting protein modifications play major roles in building Golgi ribbon. METHODS: To explore how Golgi ribbon is shaped as a crescent-like structure under the guidance of protein modifications, we identified a protein complex containing the scaffold proteins Ajuba, two known GA regulators including the protein kinase Aurora-A and the protein arginine methyltransferase PRMT5, and the common substrate of Aurora-A and PRMT5, HURP. Mutual modifications and activation of PRMT5 and Aurora-A in the complex leads to methylation and in turn phosphorylation of HURP, thereby producing HURP p725. The HURP p725 localizes to GA vicinity and its distribution pattern looks like GA morphology. Correlation study of the HURP p725 statuses and GA structure, site-directed mutagenesis and knockdown-rescue experiments were employed to identify the modified HURP as a key regulator assembling GA as a crescent ribbon. RESULTS: The cells containing no or extended distribution of HURP p725 have dispersed GA membranes or longer GA. Knockdown of HURP fragmentized GA and HURP wild type could, while its phosphorylation deficiency mutant 725A could not, restore crescent Golgi ribbon in HURP depleted cells, collectively indicating a crescent GA-constructing activity of HURP p725. HURP p725 is transported, by GA membrane-associated ARF1, Dynein and its cargo adaptor Golgin-160, to cell center where HURP p725 forms crescent fibers, binds and stabilizes Golgi assembly factors (GAFs) including TRIP11, GRASP65 and GM130, thereby dictating the formation of crescent Golgi ribbon at nuclear periphery. CONCLUSIONS: The Ajuba/PRMT5/Aurora-A complex integrates the signals of protein methylation and phosphorylation to HURP, and the HURP p725 organizes GA by stabilizing and recruiting GAFs to its crescent-like structure, therefore shaping GA as a crescent ribbon. Therefore, the HURP p725 fiber serves a template to construct GA according to its shape. Video Abstract.


Asunto(s)
Núcleo Celular , Aparato de Golgi , Animales , Humanos , Aparato de Golgi/metabolismo , Fosforilación , Núcleo Celular/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Mamíferos/metabolismo
2.
J Cell Physiol ; 237(12): 4517-4530, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36250981

RESUMEN

Golgi apparatus (GA) and centrosome reposition toward cell leading end during directional cell migration in a coupling way, thereby determining cell polarity by transporting essential factors to the proximal plasma membrane. The study provides mechanistic insights into how GA repositioning (GR) is regulated, and how GR and centrosome repositioning (CR) are coupled. Our previous published works reveals that PRMT5 methylates HURP at R122 and the HURP m122 inhibits GR and cell migration by stabilizing GA-associated acetyl-tubulin and then rigidifying GA. The current study further shows that the demethylase JMJD6-guided demethylation of HURP at R122 promotes GR and cell migration. The HURP methylation mimicking mutant 122 F blocks JMJD6-induced GR and cell migration, suggesting JMJD6 relays GR stimulating signal to HURP. Mechanistic studies reveal that the HURP methylation deficiency mutant 122 K promotes GR through NF-κB-induced CR and subsequently CR-dependent Cdc42 upregulation, where Cdc42 couples CR to GR. Taken together, HURP methylation statuses provide a unique opportunity to understand how GR is regulated, and the GA intrinsic mechanism controlling Golgi rigidity and the GA extrinsic mechanism involving NF-κB-CR-Cdc42 cascade collectively dictate GR.


Asunto(s)
Movimiento Celular , Centrosoma , Aparato de Golgi , Histona Demetilasas con Dominio de Jumonji , FN-kappa B , Proteína de Unión al GTP cdc42 , Centrosoma/metabolismo , Aparato de Golgi/metabolismo , FN-kappa B/metabolismo , Tubulina (Proteína)/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
3.
J Cell Physiol ; 237(1): 1033-1043, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34541678

RESUMEN

The Golgi apparatus (GA) translocates to the cell leading end during directional migration, thereby determining cell polarity and transporting essential factors to the migration apparatus. The study provides mechanistic insights into how GA repositioning (GR) is regulated. We show that the methyltransferase PRMT5 methylates the microtubule regulator HURP at R122. The HURP methylation mimicking mutant 122F impairs GR and cell migration. Mechanistic studies revealed that HURP 122F or endogenous methylated HURP, that is, HURP m122, interacts with acetyl-tubulin. Overexpression of HURP 122F stabilizes the bundling pattern of acetyl-tubulin by decreasing the sensitivity of the latter to a microtubule disrupting agent nocodazole. HURP 122F also rigidifies GA via desensitizing the organelle to several GA disrupting chemicals. Similarly, the acetyl-tubulin mimicking mutant 40Q or tubulin acetyltransferase αTAT1 can rigidify GA, impair GR, and retard cell migration. Reversal of HURP 122F-induced GA rigidification, by knocking down GA assembly factors such as GRASP65 or GM130, attenuates 122F-triggered GR and cell migration. Remarkably, PRMT5 is found downregulated and the level of HURP m122 is decreased during the early hours of wound healing-based cell migration, collectively implying that the PRMT5-HURP-acetyl-tubulin axis plays the role of brake, preventing GR and cell migration before cells reach empty space.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Movimiento Celular , Polaridad Celular , Aparato de Golgi , Proteínas de Neoplasias/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Tubulina (Proteína)/genética
4.
Oncol Lett ; 19(4): 3189-3196, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32256815

RESUMEN

Enolase transforms 2-phospho-D-glycerate into phosphoenolpyruvate during glycolysis. The human enolase (ENO) family comprises three members named ENO3, which is restricted to muscle tissues, ENO2, which is neuron- and neuroendocrine tissue-specific, and ENO1, which is expressed in almost all tissues. ENO1 is involved in various types of human cancer, including retinoblastoma, hepatocellular carcinoma, pancreatic cancer, renal cell carcinoma, cholangiocarcinoma and gastric cancer. Furthermore, ENO1 enhances cell transformation in numerous cancer cell lines. It has been reported that ENO1 is involved in various activities that are detrimental to cell transformation, including apoptosis and differentiation. However, a few studies demonstrated that ENO1 can be down- or upregulated in various types of lung cancer, which suggests that ENO1 has an ambiguous role in the development of lung cancer. The present study aimed to investigate the differential influences of ENO1 on various types of cancer, and to clarify the role of ENO1 in lung cancer in particular. Western blotting was performed to assess ENO1 protein expression levels in lung cancer and esophageal cancer tissues. Furthermore, exogenous ENO1 was overexpressed in cell lines derived from various tissues and single cell proliferation, flowcytometric analysis, and western blotting were performed to determine the cell proliferation rate, cell transformation status, cell cycle progression and the expression of cell cycle regulators, such as cyclins and cyclin-dependent kinases, and survival factors, such as MAPK and AKT. The results demonstrated that ENO1 was upregulated in collected panels of lung cancer tissues, but not in esophageal cancer tissues. In addition, overexpression of ectopic ENO1 promoted cell proliferation and survival in lung cancer cell lines, which was not the case in other cells, including an esophageal cell line. Furthermore, mechanistic analyses revealed that ENO1 enhanced cell proliferation by accelerating G1 progression and upregulating G1 phase cyclin-dependent kinase 6 (CDK6), and improved cell survival by upregulating p38 in the MAPK cascade and increasing p-AKT in the AKT cascade, in particular in lung cancer cell lines. Overall, the results from the present study demonstrated that ENO1 may contribute to the development of lung cancers, but not esophageal cancers.

5.
Oncol Rep ; 42(4): 1598-1608, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31524273

RESUMEN

Protein phosphorylation plays roles in cell transformation. Numerous protein kinase enzymes actively participate in the formation of various types of cancer by phosphorylating downstream substrates. Aurora­A is a widely known Serine/Threonine (Ser/Thr) oncogenic kinase, which is upregulated in more than twenty types of human cancer. This enzyme phosphorylates a wide range of substrates. For example, Aurora­A induces cell transformation by phosphorylating hepatoma upregulated protein (HURP) at four serine residues, which in turn decreases the phosphorylated levels of cell­growth suppressive Jun N­terminal kinase (p­JNK). Various protein phosphatase enzymes are considered tumor suppressors by the dephosphorylation and consequent inactivation of their oncogenic substrates. Protein phosphatase 1α (PP1α), for instance, acts on Aurora­A by dephosphorylating its substrates. However, the role of PP1α in cancer progression remains ambiguous. PP1α is overexpressed in several cancer tissues, and induces cell apoptosis and differentiation or it inhibits tumor formation in other types of cells. In addition, positive and negative correlations between PP1α expression and lung cancer development have been documented. These observations suggest the differential regulation of PP1α in various cancer tissues, or propose an ambiguous contribution of PP1α to lung cancer development. In order to investigate these contradictory conclusions, it was reported that the chromosomal region covering the PP1α locus was subjected to DNA alterations, such as gain or loss in various human cancer types by a study based on literature search. Upregulation of PP1α was noted in a collection of lung cancer tissues, and was required for the cell transformation of the lung cancer cell line A549. In contrast to this finding, overexpression of ectopic PP1α inhibited cell proliferation in 293T cells. Mechanistic studies revealed that PP1α activated AKT in A549 cells, whereas it further inactivated AKT and disrupted the HURP/JNK signaling cascade in 293T cells. Collectively, the data indicated that PP1α exerted an oncogenic function in lung cancer, while exhibiting various effects on cell transformation in different types of cells via distinct or opposite mechanisms.

6.
Am J Physiol Cell Physiol ; 317(3): C600-C612, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31314582

RESUMEN

Mitosis is a complicated process by which eukaryotic cells segregate duplicated genomes into two daughter cells. To achieve the goal, numerous regulators have been revealed to control mitosis. The oncogenic Aurora-A is a versatile kinase responsible for the regulation of mitosis including chromosome condensation, spindle assembly, and centrosome maturation through phosphorylating a range of substrates. However, overexpression of Aurora-A bypasses cytokinesis, thereby generating multiple nuclei by unknown the mechanisms. To explore the underlying mechanisms, we found that SLAN, a potential tumor suppressor, served as a substrate of Aurora-A and knockdown of SLAN induced immature cytokinesis. Aurora-A phosphorylates SLAN at T573 under the help of the scaffold protein 14-3-3η. The SLAN phosphorylation-mimicking mutants T573D or T573E, in contrast to the phosphorylation-deficiency mutant T573A, induced higher level of multinucleated cells, and the endogenous SLAN p573 resided at spindle midzone and midbody with the help of the microtubule motor MKLP1. The Aurora-A- or SLAN-induced multiple nuclei was prevented by the knockdown of 14-3-3η or Aurora-A respectively, thereby revealing a 14-3-3η/Aurora-A/SLAN cascade negatively controlling cytokinesis. Intriguingly, SLAN T573D or T573E inactivated and T573A activated the key cytokinesis regulator RhoA. RhoA interacted with SLAN np573, i.e., the nonphosphorylated form of SLAN at T573, which localized to the spindle midzone dictated by RhoA and ECT2. Therefore, we report here that SLAN mediates the Aurora-A-triggered cytokinesis bypass and SLAN plays dual roles in that process depending on its phosphorylation status.


Asunto(s)
Aurora Quinasa A/biosíntesis , Citocinesis/fisiología , Regulación Enzimológica de la Expresión Génica , Proteínas Supresoras de Tumor/metabolismo , Aurora Quinasa A/genética , Células HEK293 , Humanos , Fosforilación/fisiología
7.
Cancer Res ; 77(2): 494-508, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28069801

RESUMEN

Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. ©2016 AACR.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aurora Quinasa A/metabolismo , Resistencia a Antineoplásicos/fisiología , Leucemia Mieloide Aguda/patología , FN-kappa B/metabolismo , Animales , Apoptosis , Western Blotting , Línea Celular Tumoral , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Inmunoprecipitación , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidad , Ratones , Modelos de Riesgos Proporcionales , Transducción de Señal/fisiología
8.
Cell Signal ; 27(1): 26-36, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25289861

RESUMEN

Hepatoma upregulated protein (HURP) is originally isolated during the search for the genes associated with hepatoma. HURP is upregulated in many human cancers. Culture cells exhibit transformed and invasive phenotype when ectopic HURP is introduced, revealing HURP as an oncogene candidate. Our previous studies demonstrated that Aurora-A regulated the cell transforming activities of HURP by phosphorylating HURP at four serines. To unravel how the Aurora-A/HURP cascade contributes to cell transformation, we firstly noticed that HURP shuttled between cytoplasm and nucleus. The nuclear localization activity of HURP was promoted or abolished by overexpression or knockdown of Aurora-A. Similarly, the HURP phosphorylation mimicking mutant 4E had higher nuclear targeting activity than the phosphorylation deficient mutant 4A. The HURP 4E accelerated G1 progression and upregulated cyclin E1, and the cyclin E1 upregulating and cell transforming activities of HURP were diminished when the nuclear localization signal (NLS) was removed from HURP. Furthermore, HURP employed p38/nuclear factor-κB (NF-κB) cascade to stimulate cell growth. Interestingly, NF-κB trapped HURP in nucleus by interacting with HURP 4E. At last, the HURP/NF-κB complex activated the cyclin E1 promoter. Collectively, Aurora-A/HURP relays cell transforming signal to NF-κB, and the HURP/NF-κB complex is engaged in the regulation of cyclin E1 expression.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Núcleo Celular/metabolismo , Ciclina E/metabolismo , Neoplasias Hepáticas/metabolismo , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Oncogénicas/metabolismo , Regulación hacia Arriba , Aurora Quinasa A/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Fase G1 , Humanos , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas , Fosforilación , Transporte de Proteínas
9.
Cell Signal ; 26(12): 2940-50, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25277535

RESUMEN

Methylosome protein 50 (MEP50) is a component of methylosome where MEP50 binds protein substrates and activates the oncogenic protein arginine methyl transferase 5 (PRMT5). MEP50 is also a coactivator for androgen receptor (AR) and estrogen receptor (ER), and transforms cells in the presence of androgen or estrogen. To extend the understanding of how MEP50 transforms cells, we investigated whether MEP50 could transform cells independent of AR and ER, and clarified whether PRMT5 could contribute to the MEP50-caused tumor formation. Microarray and Western blot analyses revealed the association of MEP50 with many human cancers including lung cancer. Knockdown of MEP50 retarded cell growth and migration in selected lung cancer cell lines, which expressed very low level of AR and ER and were insensitive to inhibitors of AR and ER. Moreover, overexpression of Myc-MEP50 enhanced cell transforming activities of 293T cells which are known lack of expression of AR and ER. Mechanistic analyses showed that MEP50 controlled G2 progression, upregulated cyclin-dependent kinase 1(CDK1)/cyclin B1, and activated the survival cascade Phosphoinositide 3-kinase (PI3K)/AKT. MEP50 promoted cell migration, and activated the cell migration pathways such as Ras-related C3 botulinum toxin substrate 1 (Rac1)/vasodilator-stimulated phosphoprotein (VASP), and forkhead box protein A2 (FOXA2)/slug/cadherin cascades. Further analyses revealed that MEP50 activated the survival factor PI3K through PRMT5-catalyzed dimethylation of PI3K. Collectively, it is concluded that MEP50 can transform cells independent of AR and ER, and PRMT5 has partial contribution to that process.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Andrógenos/metabolismo , Carcinogénesis/metabolismo , Estrógenos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Receptor alfa de Estrógeno/metabolismo , Fase G2 , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Metilación , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal , Regulación hacia Arriba
10.
Am J Physiol Cell Physiol ; 307(5): C466-78, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25009111

RESUMEN

Cells display dramatic morphological changes in mitosis, where numerous factors form regulatory networks to orchestrate the complicated process, resulting in extreme fidelity of the segregation of duplicated chromosomes into two daughter cells. Astrin regulates several aspects of mitosis, such as maintaining the cohesion of sister chromatids by inactivating Separase and stabilizing spindle, aligning and segregating chromosomes, and silencing spindle assembly checkpoint by interacting with Src kinase-associated phosphoprotein (SKAP) and cytoplasmic linker-associated protein-1α (CLASP-1α). To understand how Astrin is regulated in mitosis, we report here that Astrin acts as a mitotic phosphoprotein, and Aurora-A phosphorylates Astrin at Ser(115). The phosphorylation-deficient mutant Astrin S115A abnormally activates spindle assembly checkpoint and delays mitosis progression, decreases spindle stability, and induces chromosome misalignment. Mechanistic analyses reveal that Astrin phosphorylation mimicking mutant S115D, instead of S115A, binds and induces ubiquitination and degradation of securin, which sequentially activates Separase, an enzyme required for the separation of sister chromatids. Moreover, S115A fails to bind mitosis regulators, including SKAP and CLASP-1α, which results in the mitotic defects observed in Astrin S115A-transfected cells. In conclusion, Aurora-A phosphorylates Astrin and guides the binding of Astrin to its cellular partners, which ensures proper progression of mitosis.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitosis/fisiología , Mapas de Interacción de Proteínas/fisiología , Células HeLa , Humanos , Fosforilación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...